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1. Introduction 

Resonating cavities have been used as a means to achieve stable and unidirectional radiation 
patterns for mounted antenna apertures. Radiation properties such as resonant frequency (fr) and 
realized gain are directly determined by the rectangular cavity dimensions. Generally, the fr is 
defined by the half-free space wavelength at the desired frequency, while the best gain results 
occur for a quarter-wavelength rectangular cavity in the normal direction. 

Many applications in wireless communications and radar require antennas that conform to the 
surface of the supporting structure. Whenever applicable, the antenna aperture is approximated 
by a flat plane with the requirement that the dimension normal to the aperture (“profile”) be 
minimized. Low-profile antennas (LPAs) are of special importance within the ultra-high 
frequencies (UHF) band, where they are used as communications antennas on military platforms. 
LPAs reduce platform visibility and decrease antenna weight, which becomes critically 
important in airborne platforms. In addition, many military vehicles contain several protruding 
antennas for multiple communication links at UHF. Therefore, there is great interest in 
developing LPAs with wide bandwidths (BWs). Meeting both requirements at the long 
wavelengths involved poses special difficulties. 

Traditionally, magnetic materials have high losses at microwave frequencies above 100 MHz, 
which makes them unsuitable as substrates for UHF antenna structures. The availability of 
artificial magnetic metamaterials has widened the range of possible design approaches. Of 
particular interest are high index magnetic materials (μr ≥ 10) that exhibit low loss in the UHF 
band.1,2 Furthermore, the development of artificial magnetic metamaterials allows engineers to 
separately control the values of both magnetic permeability and electric permittivity.  

The goal of this report is to derive the anisotropic transverse resonance condition for a parallel 
plate structure partially loaded with anisotropic magneto-dielectric material. This calculation 
allows engineers to design cavity-backed LPAs that maintain a constant fr when loaded with high 
index anisotropic materials. This is important because the refractive index of any material will 
alter fr when placed in a resonant cavity. By maintaining a constant fr, the designer will suppress 
destructive interference from higher-order modes inside the cavity.  

This report presents an antenna model where the profile reduction is achieved with high index 
anisotropic magnetic material. The antenna under investigation is a radiating, tapered rectangular 
cavity. An appropriately shaped high index magneto-dielectric material within the cavity 
establishes local resonance conditions with the conducting walls of the cavity. Furthermore, this 
report demonstrates that using anisotropic magnetic metamaterials to load this cavity achieves 
positive realized gain from 220–505 MHz with a return loss (S11) of better than –10 dB with a 
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cavity profile depth of 0.06λr, where λr is the cutoff free-space wavelength based on the 
dimensions of the aperture. All simulations are performed with CST Studio Suite 2014 and all 
materials are assumed to be lossless. 

2. Derivation of a Tapered Cavity Based on an Anisotropic Transverse 
Resonance 

A novel idea for a tapered rectangular cavity based on the transverse resonance was proposed in 
a previous report entitled “Comparison of Anisotropic versus Isotropic Metamaterials in a Low 
Profile UHF Antenna Design”.3 This report presented an antenna based on a transverse 
resonance condition derived for isotropic materials and demonstrated the ability of this design to 
suppress higher-order modes. 

The previous report showed that loading the cavity model shown in Fig. 1 with anisotropic 
material gave the best results, even though the transverse resonance condition that yielded this 
cavity was based on isotropic values of permeability and permittivity. The cavity dimensions that 
correspond to this design are given in Table 1. 

 

Fig. 1   The cavity geometry derived from the isotropic transverse resonance condition3 

Table 1   The dimensions in inches for the geometry in Fig. 1 

a0 b a1 fr (MHz) d PW L 

26.25 11.7 8.3 225 3.3 8.0 8.5 

 
Note that ao = λr/2, b = ao/2.25, and a1 = ao/[(µr/εr)^0.5]. This design yielded a S11 < –6 dB, or a 
voltage-standing-wave-ratio (VSWR) of better than 3:1, from 350–580 MHz, and a  
S11 < –10 dB, or a VSWR of better than 2:1, from 400–575 MHz. Furthermore, a positive 
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realized gain is achieved from 220–580 MHz. These performance metrics are achieved with 
permeability and permittivity tensors of 

 

15 0 0 1 0 0
0 1 0 and 0 1 0
0 0 1 0 0 1

r rµ ε
   
   = =   
       . 

Section 2.1 shows the results of the derivation of the anisotropic resonance condition for the 
anisotropic case, and its application to the improvement of the previous antenna design from 
Reference 3. 

2.1 Anisotropic Transverse Resonance Derivation 

At any point z in the tapered cavity shown in Fig. 1, a resonance condition is established by 
material width w(z) and the distance between the two conducting walls a(z). At each point in 
space, this resembles a finite parallel plate waveguide partially loaded with anisotropic material 
with two conducting walls.  

Figure 2 shows a transmission line representation of this parallel plate structure. For a known 
value of w(z), we can determine the value of a(z) in terms of Lg. The following subsections 
describe how to determine Lg from the transverse resonance condition established by the 
conducting walls and the boundaries at the interface between the anisotropic material and free 
space. 

 

Fig. 2   Transmission line representation of parallel plates partially loaded with anisotropic material 

2.1.1 Free Space Region (–a/2 ≤ x ≤ –w/2) 

Assume Maxwell’s source free equations: 



 
 

 4 

 oE j Hωµ∇× = − ,  (1a) 

 oH j Eωε∇× = .  (1b) 

Evaluating the curl operator of Eqs. 1a and 1b yields the following transverse components for the 
electric and magnetic fields in the waveguide in terms of Hz and Ez: 

 
2 2

z z
x o zo

o zo

dH dEjE k
k k dy dx

ωµ
 

= − + −   , (2a) 

 
2 2

z z
y o zo

o zo

dH dEjE k
k k dx dy

ωµ
 

= − −   , (2b) 

 
2 2

z z
x o zo

o zo

dE dHjH k
k k dy dx

ωε
 

= − −   , (2c) 

 
2 2

z z
y o zo

o zo

dE dHjH k
k k dx dy

ωε
 

= − + −   . (2d) 

To solve for Hz, we formulate the transverse free space wave equation from Eqs. 1a and 1b as 

 ( ) ( ) 2
T T o T T T T zH j E H Hωε∇ ×∇ × = ∇ × = ∇ ∇ ⋅ −∇ , 

 ( ) 2 0o o z T zj j H Hωε ωµ− +∇ = , 

 
2 2

2
2 2 0z z

o z
d H d H k H
dx dy

 
+ + = 

 
. (3) 

At the cutoff frequency kzo = 0, which allows us to calculate resonance at cutoff for this structure. 
If we assume a TE10-like resonance, then kyo = 0 for the first resonance at cutoff, which means no 
variation of the fields in the y-direction. This means that d2Hz/dy2 = 0 and 

 

2
2

2 0z
o

d H k
dx

+ =
, (4) 

 o okβ = . (5) 

Solving Eq. 4 for Hz and inserting into Eq. 2b yields 

 
o ojk x jk x

zH Ae Be− += + , (6a) 
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 ( )( ) ( )2
o o o ojk x jk x jk x jk xo

y o o
o

jE jk Ae Be Z Ae Be
k
ωµ − + − += − − = − . (6b) 

We can see from Eqs. 2a–2d that based on our resonance conditions on Ez, kzo and kyo that Ex = 0, 
Hx = 0, and Hy = 0. 

2.1.2 Anisotropic Region (–w/2 ≤ x ≤ 0) 

Again assume Maxwell’s source free equations in the anisotropic region  

 o rE j Hωµ µ∇× = − ⋅
, (7a) 

 o rH j Eωε ε∇× = ⋅
, (7b) 

where the permeability and permittivity are now defined by tensors 

 

 
0 0

0 0
0 0

x

r y

z

µ
µ µ

µ

 
 =  
  

  and  
0 0

0 0
0 0

x

r y

z

ε
ε ε

ε

 
 =  
  

. (8) 

 
Evaluating the curl operator of Eqs. 7a and 7b yields the following transverse components for the 
electric and magnetic fields in the waveguide in terms of Hz and Ez

4,5 

 
12 2

1

z z
x o y z

o y x z

dH dEjE k
k k dy dx

ωµ µ
µ ε

 
= − + −   , (9a) 

 
12 2

1

z z
y o x z

o x y z

dH dEjE k
k k dx dy

ωµ µ
µ ε

 
= − −   , (9b) 

 
12 2

1

z z
x o y z

o x y z

dE dHjH k
k k dy dx

ωε ε
µ ε

 
= − −   , (9c) 

 
12 2

1

z z
y o x z

o y x z

dE dHjH k
k k dx dy

ωε ε
µ ε

 
= − + −   . (9d) 

To solve for Hz we formulate the transverse anisotropic wave equation from Eqs. 7a and 7b:4,5 

 
( )T T o r TH j Eωε ε∇ ×∇ × = ⋅ ∇ ×

, 

 ( )T T o r o rH j j Hωε ε ωµ µ∇ ×∇ × = ⋅ − ⋅ , 
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( )1 2

T r T o rH k Hε µ−∇ × ⋅ ∇ × = ⋅
, 

 

22 2 2
2

2 2 2 2 2 2
1 1

0o yo x z z
o z z

o x y z o y x z

kk d H d H k H
k k dx k k dy

µµ µ
µ ε µ ε

+ + =
− − . (10) 

Now set kz1 = 0, which allows us to calculate resonance at cutoff for this structure. Similarly, we 
can assume that ky1 = 0 for the first resonance at cutoff. This means that d2Hz/dy2 = 0 

 

2
2

2 0z
o z y

d H k
dx

µ ε+ =
, (11) 

 1 o z ykβ µ ε= . (12) 

Solving Eq. 11 for Hz yields 

 
1 1j x j x

zH Ce Deβ β− += + , (13a) 

 ( )( ) ( )1 1 1 1
1

j x j x j x j xo z
y o

o y y

jZE j Ce De Z Ce De
k

β β β βµβ
ε ε

− + − += − − = − . (13b) 

We can see from Eqs. 9a–9d that based on our resonance conditions on Ez, kz1 and ky1 that Ex = 0, 
Hx = 0 and Hy = 0. 

2.1.3 Solving the Boundary Conditions for the Impedances in the two Regions 

The first boundary condition exists at the perfect electric conductor (PEC) boundary at x = –a/2 
where the electric field is known to be zero: 

 
2 2

2

0 o o
a ajk jk

ay x
E Ae Be

−

=−
= → =

, 

 ojk aA Be−= . (14) 

Plugging Eq. 14 into our Eqs. 6a and 6b yields 

 

2 22

o o o

o oo

jk x jk a jk x
y o

a aa jk x jk xjk

o

E Z B e e e

Z Be e e

− − +

   − + + +−    
   

 = − 
 

= − 
   , 

 22 sin
2

o
ajk

y o o
aE jZ Be k x

−   = − +    
. (15a) 
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Similarly, 

 
o o ojk a jk x jk x

zH Be e Be− − += + , 

 22 cos
2

o
ajk

z o
aH Be k x

−   = +    
. (15b) 

Now we can solve for the impedance of the free space region as Z = –Ey/Hz 

 
tan , 0

2 2 2
y

o o o
z

E a a a wZ jZ k x x
H

  −   = − = + ≤ + ≤         . (16) 

The second boundary condition exists at x = –w/2, where the tangential fields at the boundary are 
equal. In this case, there are two tangential fields in Ey and Hz. At the boundary, we have the 
following three conditions: 

 2 2
w wy yx x

E E− +

=− =−
=

, (17a) 

 2 2
w wz zx x

H H− +

=− =−
=

, (17b) 

 1
2 2
w wo x x

Z Z− +

=− =−
= . (17c) 

Plugging Eqs. 13 and 15 into Eqs. 17a and 17b yields the following set of equations: 

 

1 12 2 22 sin
2

o
a w wjk j jz

o
y

a wjBe k Ce De
β βµ

ε
− − +  −  − = −        , (18) 

 1 12 2 22 cos
2

o
a w wjk j j

o
a wBe k Ce De

β β− − + −   = −    
. (19) 

This gives us two equations to solve for three unknowns. In order to solve for the third unknown, 
we can match Eq. 16 to the impedance in the anisotropic region at x = –w/2. Again we solve for 
Z = –Ey/Hz from Eqs. 15a and 15b: 

 

1 1 1

1 1 1

2

1 2

1 , 0
1 2

j x j x j x
z z

o oj x j x j x
y y

De Ce e wZ Z Z x
De Ce e

β β β

β β β

µ µ ρ
ε ε ρ

+ − −

+ − −

   − −
= = − ≤ ≤   + +    , (20a) 

 
1

z
o

y

Z Z µ
ε

=
, (20b) 
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C
D

ρ =
. (21) 

Now applying boundary condition Eq. 17c to Eqs. 16 and 20 

 

1

1

1 tan
1 2

j w
z

o o oj w
y

e a wZ jZ k
e

β

β

µ ρ
ε ρ

 −  −  =     +     , 

 
1

1

1 tan
1 2

j w
y

oj w
z

e a wj k j X
e

β

β

ερ
ρ µ

 −  −  = =    +    
, 

 1 11 j w j we j X j X eβ βρ ρ− = + , 

 1 11 j w j wj X j X e eβ βρ ρ− = + , 

 1
2

1 tan
1
1

1 tan

z y

y
wjj w z

y

z

a wj
j X e e
j X a wj

π µ εβ λ

ε
π

µ λ
ρ

ε
π

µ λ

−−

  −  −   −    = =  
+  −   +       

. (22) 

Substituting Eq. 22 into Eq. 21 gives us our third equation along with Eqs. 18 and 19 to solve for 
the three unknowns B, C, and D. 

2.1.4 Solving for the Transverse Resonance Condition 

If we view Fig. 2 as a transmission line representation of our problem, we can solve for Lg in 
terms of w for a given wavelength (λo). For instance, at 200 MHz, λo = 1.5 m. We can use the 
input impedance transformations of transmission line theory to calculate inZ


 at x = 0. Then by 

symmetry the transverse resonance condition simplifies to 0inZ =


or 0inY =


. 

Starting at x = –a/2, we can calculate inZ


 at x = –w/2 by  

 tano o gZ jZ k Lα  =  


. (23) 

We can now calculate inZ


 at x = 0 as 

 

1 1

1

1 1

tan
2

tan
2

wZ jZ
Z Z

wZ jZ

α

α

β

β
Ω

 +  
 =
 +  
 







. (24) 

The transverse resonance condition simplifies Eq. 24 to 
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1 1tan 0

2
wZ jZα β + = 

 



. (25) 

Plugging Eqs. 20b and 23 into Eq. 25 yields the following equation for Lg: 

 
( )tan tan 0

2
z

o o o g o z y
y

wZ Z k L kµ µ ε
ε

 − = 
  , 

 

11 tan
2 tan

z

yg

z y

L
w

µ
ε

πλ π µ ε
λ

−

 
 
 =   
  

    . (26) 

In Reference 3, Lg depended on both µr and εr, which means all six permittivity and permeability 
tensor elements affected the return loss of the antenna. We know that ultimately the permeability 
value in the direction of the magnetic field at the aperture is what determines the best return loss 
for our antenna in Fig. 1.3 Now we see that as we change this tensor value (µx), there will be no 
effect on the taper of the cavity. 

Figure 3 shows the relationship between the ratio of μz/εy and the shape of the cavity. Note that 
for a ratio of 1, we have a purely linear taper. Now that we have an explicit expression for the 
cavity taper based on anisotropic permittivity and permeability, we apply it to antenna design in 
Fig. 1 to see if we can further optimize the performance. 
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Fig. 3   Plot of Eq. 26 for various ratios of μz/εy with an assumed depth of 3.3 inches 

3. Low-Profile Antenna Design 

Now we can use Eq. 26 to design an optimum cavity taper for our LPA. We start out by 
comparing a tapered cavity based on our anisotropic transverse resonance condition to that of an 
antenna in Fig. 1. 

3.1 Anisotropic Tapered Cavity 

Figure 1 has a cavity shape based on a ratio of µr/εr = 15.3 Therefore, for an accurate comparison 
using the same cavity shape, we use a ratio of μz/εy = 15. Furthermore, we know that a value of 
µx = 15 gives our best broadband return loss.3 This results in the following permeability and 
permittivity tensors for our anisotropic material: 
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15 0 0
0 1 0
0 0 15

rµ
 
 =  
  

  and  

1 0 0
0 1 0
0 0 1

rε
 
 =  
  

. (27) 

Figure 4 shows a cavity that is very similar to Fig. 1. The dimensions of the tapered cavity are 
given in Table 2. Note that now a1 = ao/[(µz/εy)^0.5]. In order to achieve the best wideband return 
loss, fr has been lowered to 150 MHz. This results in a much larger aperture; however, the profile 
of the antenna remains d = 3.3 inches.  

 

 

Fig. 4   The cavity geometry derived from the anisotropic transverse resonance  
condition with μz/εy = 15 

Table 2   The dimensions in inches for the geometry in Fig. 4 

a0 b a1 fr (MHz) d PW L 

39.4 17.5 10.2 150 3.3 0.25λr 0.35λr 
 
This antenna model is now a two-port system with two symmetric probes. This differs from the 
one-port probe shown in Fig. 1. Feeding the two probes 180° out of phase provides a continuous 
current path across a positive-to-negative voltage potential across the walls of the cavity in the  
y-direction. This should provide a better impedance match at the input to both ports. 

Figure 5 shows the return loss versus frequency for the single-port antenna of Fig. 1 and the 
symmetric-port antenna of Fig. 4. This shows a S11 < –6 dB from 230–505 MHz, which is about 
an 80-MHz improvement in BW at the upper end of the frequency range. We also have a much 
flatter S11 response from 250–420 MHz even though the return loss is better for the single-probe 
antenna. Figure 6 shows the VSWR versus frequency for the single-port antenna of Fig. 1 and 
the symmetric-port antenna of Fig. 4. This shows better than a 3:1 VSWR from 230–505 MHz, 
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which is about an 80-MHz improvement in bandwidth at the upper end of the frequency range of 
the single probe antenna. Figure 7 shows the realized gain versus frequency for the single-port 
antenna of Fig. 1 and the symmetric-port antenna of Fig. 4. This shows the most dramatic 
difference in performance. Due to the flat return loss response of the symmetric-probe antenna 
over 420–500 MHz, the deep trough in the realized gain for the single-probe antenna is 
eliminated. This gives us a positive realized gain in excess of the entire BW 180–515 MHz.  

The combination of realized gain and return loss yields over an octave of BW for the antenna 
design in Fig. 4 with tensor values of Eq. 27. However, we have forced the µz component of the 
permeability tensor to be 15. However, the µz component should have little effect on the overall 
performance of the antenna.3 Section 3.2 investigates how setting µz = 1 affects the shape of the 
cavity and the performance of the antenna. 

 

Fig. 5   Return loss at the probe inputs of the single-probe antenna (blue) and the symmetric-probe antenna (red) 
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Fig. 6   VSWR at the probe inputs of the single-probe antenna (blue) and the symmetric-probe antenna (red) 

 

Fig. 7   Far field realized gain of the single-probe antenna (blue) and the symmetric-probe antenna (red) 
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3.2 Anisotropic Non-Tapered Cavity 

This section explores how setting µz = 1 affects the cavity shape of the antenna design. The 
results of Reference 3 suggest that this should have little effect on the return loss of the antenna. 
Figure 3 suggests that a ratio of μz/εy = 1 will result in a linearly tapered cavity. However, for the 
special case of μz/εy = 1, where both μz and εy are unity, the walls of the cavity do not need to be 
tapered at all. 

Figure 8 shows the cavity geometry given by Eq. 26 for the following permeability and 
permittivity tensors 

 

15 0 0
0 1 0
0 0 1

rµ
 
 =  
  

  and  

1 0 0
0 1 0
0 0 1

rε
 
 =  
  

.  (28) 

 

 

Fig. 8   The cavity geometry derived from the anisotropic transverse resonance condition with  
μz = 1 and εy = 1 

The cavity shape is a rectangular cavity with no taper. This is a very different result from those 
of Figs. 1 and 4. This indicates that regardless of the anisotropic tensor values, as long as μz = 1 
and εy = 1, any amount of loading will result in the same cavity shape and a constant fr even at 
the material to free space boundary. We now see if changing the value of μz from 15 to 1 has any 
effect on the return loss or realized gain of the antenna. 

Figures 9–11 show very good agreement in the return loss, VSWR, and realized gain plots. 
Therefore, we conclude that the non-tapered cavity shape of Fig. 8 has no noticeable effect on 
the overall performance of the antenna. This is a very useful result, because it means the shape of 



 
 

 15 

the cavity can be changed to fit in different environments as long as the designer has some 
amount of control over the µz component of the permeability tensor. 

 
Fig. 9   S11 at the probe inputs for the tapered antenna cavity with µz = 15 (blue) and the non-tapered antenna cavity 

with µz = 1 (red) 

 
Fig. 10   VSWR at the probe inputs for the tapered antenna cavity with µz = 15 (blue) and the non-tapered antenna 

cavity with µz = 1 (red) 

-12 

-10 

-8 

-6 

-4 

-2 

0 

0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 

dB
 

Frequency (GHz) 

Best Case |S11| for Tapered and 
Non-tapered Cavity Antenna 

tapered cavity 

non-tapered cavity 

0 

2 

4 

6 

8 

10 

0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54 

Frequency (GHz) 

Best Case VSWR for Tapered and Non-
tapered Antenna Cavity 

tapered cavity 

non-tapered cavity 



 
 

 16 

 

Fig. 11   Realized gain for the tapered antenna cavity with µz = 15 (blue) and the non-tapered antenna cavity with  
µz = 1 (red) 

3.3 Cascaded Antenna with Feed Structure 

The results of the symmetric-probe-fed antenna models from Sections 3.1 and 3.2 were driven 
using two separate ports that are 180° out of phase with an equal magnitude. This is an optimized 
way to drive the antenna, but in reality we would want a feed structure with a single input port 
and two output ports with –3.0 dB insertion loss (this is a one-half power split) as well as a 180° 
phase shift. The following subsections show the results for two different feed structures. 

The following are the results for a commercial 180° hybrid coupler and the non-tapered antenna 
of Fig. 8. The commercial splitter is the Werlatone 2-Way 180° Combiner/Divider H7971-102. 
The pertinent S-parameter and phase difference information pertaining to this device is found in 
the Appendix. 

Figure 12 shows how the two output ports 2 and 3 of the coupler connect to the two antenna 
input ports 1A and 2A. All antenna dimensions are consistent with Table 2. 
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Fig. 12   The diagram showing the connectivity between the 180° coupler and the two-port antenna 

Figures 13–15 compare the performance of the system shown in Fig. 12 to those of the antennas 
shown in Fig. 8 to see if there is any improvement when using the commercial coupler. It should 
be noted that for the antenna with no coupler, the return loss is calculated at the input to port 1A 
in Fig. 12, and for the antenna with the coupler, the return loss is calculated at the input to port 1. 
There is better than a 4-dB improvement in S11 due to the presence of the coupler and up to  
0.75-dB degradation in realized gain due to the added insertion loss in S21 and S31 of the 
coupler.  

Adding a commercial 180° hybrid coupler has improved the return loss at the input to the system 
and increased the bandwidth with very little degradation in the realized gain. The antenna system 
now has better than a 2:1 VSWR from 220–505 MHz and better than a 3:1 VSWR from  
200–515 MHz. The return loss of the antenna design was good enough that the 0.75-dB 
degradation in the return loss is due almost solely to the insertion loss of the coupler and not due 
to any mismatch between the output port of the coupler and the input port of the antenna. 

 

Fig. 13   Return loss vs. frequency at for the antenna of Fig. 12 (red) and Fig. 8 (green) 
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Fig. 14   VSWR vs. frequency plots for the antenna of Fig 12 (red) and Fig. 4 (green). 

 

Fig. 15   Realized gain vs. frequency plots for the antenna of Fig 12 (red) and Fig. 4 (green) 
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4. Conclusions 

This report details the derivation of a LPA based on an anisotropic resonance condition of a 
partially loaded rectangular cavity. Results show that the shape of the cavity taper can be 
changed as needed with no degradation to the overall antenna performance through control of the 
permeability in the normal direction (µz). Research in this area has yielded a LPA design that has 
a profile of d = 0.055λo (λo /19) at 200 MHz or d = 3.3 inches with µx = 1. This antenna design 
has more than an octave of bandwidth from 200–515 MHz. This is a 78% reduction in antenna 
profile compared to the traditional λo /4 separation between radiating element and ground plane. 
The design has a positive realized gain from 180–515 MHz, a 3:1 VSWR from 200–515 MHz, 
and a 2:1 VSWR from 220–505 MHz. The 3:1 VSWR BW exceeds the design goals of  
200–500 MHz.  

Further investigation into matching techniques for larger values of µx is needed to try and reduce 
the profile of the antenna further. 
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Appendix. Werlatone 180° Divider/Combiner 

This appendix shows the pertinent S-parameters of the 180° hybrid coupler discussed in Section 
3.3. This is in actuality a four-port device, but the fourth port is terminated inside the metal box. 

Figure A-1 shows a picture of the device. There is one input port and two output ports with a 
180° phase difference. Its operational frequency range is 100–1000 GHz, but we are interested 
mostly in the 200–500 MHz range. Figure A-2 shows the return loss at the input port of the 
coupler as measured on a network analyzer. Here we see a better than –20 dB return loss across 
the entire frequency range of interest. Figure A-3 shows the insertion loss at the output ports of 
the coupler as measured on a network analyzer. There is a 0.25-dB difference between the two 
outputs. These plots show a 0.55–0.75 dB difference in insertion loss from a perfect –3.0 dB 
split. Figure A-4 shows the phase difference at the output ports of the coupler as measured on a 
network analyzer. This device maintains a phase separation of 180.5° across frequency. 

 

Fig. A-1   Picture of the 180° coupler with the ports labeled. Port 1 is the input and ports 2 and 3 are the outputs. 
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Fig. A-2   S11 of the Werlatone 180° hybrid coupler 

 

 

Fig. A-3   S21 and S31 of the Werlatone 180° hybrid coupler 
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Fig. A-4   Phase difference at ports 2 and 3 of the 180° coupler 
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